
i
i
I
I
!

!
I
!
I
i
I
I
!

I

I

I
I

I
I

i
I
I
i
i
i
I

Ihe Impact ofAuWnomy
Technology on S p a c e e d
-am Amhitecfvret

Edward B. Gamblo, Jr., California Irstilute of Twhnology, JeI Propulsion Laboratory
Reid Simmons, Sthool of Computer Sden:e, Carnsgie Mallon Universily

high-level, clOJed-loopcontrol of spacecraft THE AUTHORS DR4 W ON THElR EXPERl.E,\lCE WITH THE
crffers considerable benefits to space-flight AUTONOMY TECHNOLOGY DE;MONSTRATION ON NASA's
projects. Those benefits can enable whole
new classes of missions; however, they are 1 DEEP SPACE ONE MISSION TO DESCRIBE THE WIDE-RAiiGING
not without cost. In this article, we describe
both the impact that autonomy technology I

EFFECT ACTONOMY WlLL HAYE ON THE DEI/ELOPVENT OF
has on spaceCratt softwan and the implica- I
tion for the software archicecture that arise
from those impacts. Some of the impacts are
inherent in the challenging problems gener- implementation for handling the added func-
a!ly confronted in the spacecraft domain yet tionality provided by autonomy technologies.
are exacerbated by autonomy technology. For instance, in contrast to traditional space-'

' craft software, the computation time of many
autonomy technologies cannot be predicted

more flexible. Similarly. software that can
Ti3 increase reliability and enable new mis- 1 react to unexpected contingencies and oppor-

sions. spacecraft 5yscems are moving toward tunities will likely have many branch points,
more wtonomous operations. In particular, so brute-force, exhaustive testing is not fea-
today's spacecraft designers need autonomy sible. These, and many other factors. com-
i n cases where long communication time plicate the design, implementation, and vali-
delays make command and monitoring oper- dation of autonomy technologies.

Overview precisely, su the process scheduler must be

ntions by ground-based operaton infeasible. We contend that a well-conceived software
By analyzing data and making more deci- architecture can have significant positive
sions 011 buard. spacecraft can handle con- ilnpact on the developrncnt of autonomy
tinycncies quicker and more intelligently, can I technologies and on the ability to integrate
takc sstions based o n current data, and can 1 them with traditional spacecraft functions,
react effectively t o ncw opportunities. such 2s at:itude control and telemetry.

Spacecraft designers also need new ap- 1 While attitudes: toward softwarc architec-
proaches t o spacecraft software design and 1 cures are sornetimcs disrnissivc--"it's just

SPACECRAFTSOFTWARE. '

, ! . . : ,

boxes and arrows"-recent research has laid
a rigorous foundation for the field of soft-
ware architectures.' The analysis we present
here, while not formal, attempts 10 discuss in
depth the constraints that the domain of deep-
space missions place on the design and
implementation of autonomy technologies
and, similarly, describe how the addition of
high levels of autonomy affects the overall
software architecture.

The term software nrcltit&um enconl-
p a w s several different notions. For our yur-
poses, we consider only architectural sivle
and srructure. Architectural style refers to
computational concepts that can be uni..
family applied throughout the system. For
instance, one system might be designed in an
asynchronuus, publish-subscribe style, while
another uses a more synchronous, cliont-
server model. An architucturc's structure
refers to its decomposition into component

parts. This includes specifying the functional
behavior ofirldividual components and inter-
faces between components, to indicate both
information and control flow. For hierarchi-
cally structured systems, the architecture
specifies the levels of abstraction and how
the various layers are decomposed.

A well-defined architecture gives the soft-
ware developer a number of advantages in
design, implementation, testing, and main-
tenance. From a software design perspective,
both the style and structure of an architecture

Challenges of spacewaft
autonomy

In general, bui!ding autonomous systems
is a challenge. Autonomous systems must
create and execute plans of action to achieve
high-level goals. while also maintaining the
ability to react, in real timc, to unexpected
contingencies. Often, they must choose be-
tween conflicting goals and deal with

I
I
I
I
I
1

resource conflicts. memories must be radiation hardened, an
The domain of deep-space missions adds expensive and time-consuming development

use fuel (such as for course corrections or
orbit insertions) must he made in such a way
as to gummtce that sufficient rescrves will be
avaiilable for later pats of the mission. includ-
ing unexpected Contingencies.

Finally, computation itself is a limited
onboard resource. Spxeaaft computers typ-
ically lag several generations hehind com-
mercial products, both due to power lirnita-
tions and because onboard CPLs and

are very important. The architectural style several constraints that make spacecraft process.
often greatly influences how components autonomy particularly challenging. These I
behave and interact with one another. For constraints relate to the facts that it is very Reliability. Given the vast distances
instance, a publish-subscribe style has impli- expensive to launch mass into space; that the , i involved, deep-space missions tend to be
cations for the need to maintain internal state I space environment is harsh, the destinations i very long. The Pathfinder mission to Mars
and how a component reacts to unexpected was a relatively short hop-six months
inputs.? A well-defined architectural'struc- " ' i !$

ture lets us develop syskms in a modular, dis-

... ..
travel. More typical are missions such as
Cassini (six years ro Saturn). During this . , .Ill

tributed fashion, with the expectation that extended time, the probability of unexpected
integration will be facilitated by careful GoOD ~ c H ~ c ~ and unanticipated events is very high. Prob-
detailing of functionality and interfaces. SHOVJJ ,WE T(T smpu TO lems can arise from hardware or software

From an implementation point of view, failures, either transient or permanent, caused
architectural styles can make it easier to DO S " L J ? THINGS IN THE by design flaws or unexpected environmen-
implement a design by providing standard- DOMAIN, = ~ o ~ p ~ g - tal conditions.
ized languages, code libraries, and tools tai- An autonomous spacecraft system must
lored for the particular style. In essence, these CLUDI?VG ONE FROM DOING be able LO detect any and all such problems
languages, libraries, and tools encapsulate and deal with them, at some level. This can
patterns of computation that [he particular lMom range from the basic response of achieving
architectural style needs. Common examples a sufe spacecraft state (where resource use is
include languages and tools for object- minimized and Earth telecommunications is
oriented programming and code libraries for I distant, and the scientific missions exacting: I enabled), up to autonomously dealing with

ing). For spacecraft architectures. other types
of packages might be used to support deme-
try. exception handling. sensor management,
and so forth. In addition to simplifying
implementation. such tools can facilitate val-
idation and verification, because they them-
selves are often reliable and well-tested.

Finally, a well-structured architecture can
facilitate system maintenance. Because the
function of, and interfaces between, cornpo-
nents are weil-specified. we can replace
components without fretting about how the
replacements will affect the rest of the system
(note, hnwever* that this is less true for tightly
coupled systems, which is the case for many
spacecraft systems).

In essence. architectures provide con-
straints on how problems should be

interprocess communication (message pass- 1 and that spacecraft are highly complex and

I
i
I
!
I
1

I
I

approached and solved. In any given archi- I FueI (for propulsion) is another highly lim-

sophisticated mechanisms.

Limited resources. Probably the most sig-
nificant factor in controlIing deep-space
spacecraft, either manually or autonomously,
is that resources are very limited and so must
be used with maximum efficiency. For deep-
space missions in particular, the maximum
available electrical power typically cannot
run dl the spacecraft's devices simultane-
ously. Usually, to run one piece of equipment
(such as a science instrument, motor, ur
transmirter), other devices must be turned off.
A similar situation occurs for the solid-state
recorder (storage) devices, which for deep-
space missions generally have insufficient
capacity to hold all the relevant scicnce and
engineering data simultaneously.

!

I

I
I
I

i -
tecture, some things are hard to do or express,
and some arc easy. A good architecture
should make ir simple to do simple things in
the domain. while not prrxludlng one from

. . "

doing more complcx tasks. ' possible. Decisions about when and how to i landmg on comets or asteroids.
I

the situation. Recovery strategies must con-
sider how the solutions will affect other
spacecraft accivities. For instance. i f the
spacecraft is in the midst of a critical orbit-
insertion activity, achieving a safe spacecraft
state is not an option.

Another factor complicating recovery
from failures is that, to save cost, many
spacecraft have limited hardware redun-
dancy. Thus, when problems occur, the only
available solution might lead to reduced sys-
tem functionality. For instance, i f a thruster
fails, and :he spacecraft has no back-up
thrusters, the system will have to operate in
a degraded mode, perhaps with reduced tun1
rate and stability.

Spacecraft dynamics. Spacecraft are con-
stantly moving and events are continually
occurring that musc be handled in a rimely

'The most critical challenge imposed by
spacecmtt dynamics, however, 1s chat actions
might have irreversible effects. For instance,
if H vpacecraft misses an orbit insertion, it
gets no second chance. Often, spacecraft sys-
tems must take likely contingencies into
account. For instance, in doing an orbit inser-
tion, the autonomy system should consider
the possibility that the main engine will fail

behavior. at least at SOIIIL' level of ahanction.
In addition, ground personnel must be able
to easily assume control when rhe autonomy
software does cot operate as anticipated.

The Remote Agent is an autonomy tech-
and include commands to prepare the backup ' nology that NASA wiL1 demonstrate-on the
engine !such as by preheating its compo- 1 Deep Space One mission. DS 1 , which will
nents) well in advance. Otherwise, by the include an asteroid and cornet flyby, is the
time it discovers that the main engine has , first in a series of technology demonstration
failed, the system will not have enough time
to prepare the b a e k ~ p . ~

Science mission. Fundamentally, deep-space
spacecraft are science-delivery platforms. It
does not matter if the autonomy system suc-
cessfully controls the spacecraft for 90% of
the t ime if it fails to acquire the anticipated
science data. Given the nature of science
opportunitiest a deep-space mission is one of
long stretches of relative quiet punctuated by
short periods of intense activity. In such sit-
uations, there are usually more science
opportunities than the mission can accom-
modate, so spacecraft systems must be ahle
to prioritize actions and use resources effec-
tively in these critical periods.

Also, by its very nature, scientific discov-
ery is unpredictable. Analysis of data leads
to new insights, but also leads to new ques-
tions to be answered. Enexpected opportu-
ni:ies often arise that are of immense scien-
tific interest (witness the Levy-Shoemaker
comet, the discovery of volcances on Io, or
the observation of the moon Dactyl orbiting
about the asteroid Ida). It is important to sci-
entists that the spacecraft be able to readily
adapt to new mission goals.

Sociologieal issues. Like many complex sys-
tems, Spacecraft systems are designed, devel-
oped. and validated by large teams of tech-
nical experts. The teams might be spatially
dispersed and certainly have a wide variety
o f backgrounds. Concepts and terminology
must he shared across guups md be easily
accessible to all.

Autonomy technologies also affect
ground opcrations. Ground-operdtiuns per-
sonnel hove deep expertise ill controlling,
monitoring, 'and diagnosing spaceuaft. They
are used to beiny able to predict, ?o a very
h~gh level of detail, how the spacecraft will
act. Thus, i t is imponarrt tha the autonomy
tochr~ologies bc seen to have predictable

missions within NASA's s e w Millennium
Program. Other deepspace missions in the
NMP include a Mars surfacc penetrator
(DS2), multispacecraft interferometry (DS3),
and a comet lander mission (DS4). Because
these NMP missions are designed for tech-
noIogy demonstration, they deemphasize sci-
ence objectives and so can tolerate signifi-
cantly more risk. On DS 1, for example, there
are 12 technologies for demonstration.

Thz R A demonstration on DS1 occurs
over a two-week period during a thrusting-
cruise mission phase. On DS 1 , thrusting
cruise requires

navigation, to measure the relative posi-
tion and velocity between the spacecraft
and the target asteroid,
attitude control, to stably direct the space-
craft toward the target and orient the
spacecraft For ground communication,
and

I" .

Figure 1. The Remota Agent components.

propulsion, LO accelerate the spacecraft
along its path to the target.

Within che two-week period, the RA demon-
stration will run twice. The first 12-hour
phase is designed to allow the DS1 ground
opcrations team to gain confidence in the RA
technology. In this phase. the spacecraft will
have continuous antenna coverage so that
were anything to go wrong the ground team
could easily reestabiish spacecraft safety.
Also, planning will not be performed on-
board; rather, a fully validated plan will be
uplinked to the RA and executed by the
EXEC. in the second six-day phase, onboard
planning is performed with goals designed
to achieve thrusting cruise, as itemized
above. During the both phases, faults are arti-
ficially injected into the RA so as to demon-
strate closed-loop control and the resulting
robust execution.

The RA components. The RA consists of
three major components? The Smart Ekecu-
rive (EXEC) robustly executes plans and fault
recovery strategies, monitors constraints and
runtime resource usage, and coordinates the
top-level commanding loop. The Planner/
Scheduler (PS) merges ground-supplied mis-
sion goals with the current spacecraft state
and produces a coordinated set of time-
delimited activities that the EXEC performs.
The Mode Identification and Reconfiguru-
rion (MIR) component performs modei-
based fault diagnosis based on the monitored
spacecraft state and, when requested by the
EXEC in response to a fault, provides plau-
sible commands to recover to the desired
state.

The three RA components are closely
coordinated (Figure 1). In the top-level corn-
mand loop that supports autonomous plan-
ning, the EXEC builds plan requests based
on the current spacecraft state, issues a plan
request to PS (which then merges the state
with the mission goals), receives a reply from
PS with the completed plan. and robustly
performs the activities coordinated by the
planner. [fa fault occur\, the EXEC builds a
recovery request with the desired spacecraft
state. requests a recovery from M I R that will
restore the desired state, receives a reply
from MIH with a command for recovery (if
one exists), performs the recovcry, and con-
rinucs with the plan activities.

The RA components interact with ~ C I U B -
tors. sensors, and planning expcrrs. Actttrr-
tors perform actions based 011 cornmands.

I
I
I
j

!
i
I

!
I
i
i
i
I
I
I

!
I
i
1
I

I
!
I
t
!
I
I
I
i

I
I
I

The actuaton themselves can he as low-level 1 commands to restorr: the spacecraft to a safe I implications that wc do not describe here.j
LIS a single switch or as high-level as the atti- state where fuel and power resouces are
tude control system (where a typical com- maintained, where thermal constraints are I Weuk cuupfing. Thc RA archltecture is fun-
mand would be to orient that spacecraft at a satisfied. and where communication with danlentally weakly couplcd. The architecture
given celestial body). Sensors provide data ' Earth is established. Many ofthe commands 1 achieves this weakcoupling with publish-sub-
that can be combined in numerous ways to 1 issued will not be confirmed, so robust exe- scribe, query-response message passing for
ascertain the state of the spacecraft. fkrnning cution relies on the detailed crafting of the
eqerrs provide estimates of resources (eIec- I command sequences.
trical power, thruster propellant, turn dura-
tion) required to perform spacecraft actions.

Standard tlight software components.
Standardflight sofrware (FSW) for deep-
space missions (those beyond lunar orbit)
typically have an onboard. open-loop, tem-
porally-based command sequencer. Given a
list of time-tagged commands. the sequencer
issues the commands at the specified times
without regard to their results. Only after the
results have been teiemerered to Earth can
ground personnel ascertain the sequence's
success. FIight software engineers achieve
robust execution not with runtime flexibility
but rather by detailed hand-crafting of the
sequences based on accurate spacecraft-per-
formance models and by extensive tests in
suitable test environments.

At a very abstract level, standard FSW
consists of drivers, managers, and subsys-
tems (s e e Figure 2). Drivers are essentidly
the software device drivers that operate at the
level of bus transactions (memory accesses,
for example). Managers encapsulate bus
communication (so that devices on different
hardware buses use a simjlar software inter-
face), produce telemetry, utilize nonvolatile
memory for persistent parameters. close
some hard real-time loops, and generally
map to a single device driver. Managers pro-
vide an increment in the software's hierar-
chical structure because there are usually
some interdevice interactions. Subsystems
coordinate activities involving several man-
agers and close higher-level control loops.
The flighc software does not explicitly rep-
resent all subsystems. Subsystems such as
navigation, propulsion, and science gener-
ally require ground personnel for closed-loop
control (idthough for DSl , one technology
scheduled for validation is onboard, au-
tonomous optical navigittlon). Other subsys-
tem, such as attitude control (ACS) and fault
protection (FP), are explicitly representcd
and do exhibil closed-loop control.

The fault-protection subsystem is charged
with ensuring the spacecraft viability. Tf the
spacecraft state indicates an off-nominal,
dangerous situation. fault prntection issues

The attitude-control subsystem must sta-
bly point the spacecraft and its devices to-
ward desired celestial targets. For solar-el=-
tric powered spacecraft, the solar panels must
face the sun (except when alternate power,
such as a battery, is available); cameras must
point toward planets for science obsetva-
tions; and antennas must aim at the Earth or
other communication sites. such as a lander.

INDEED, THE smm a-
SOURCE CONSTlUNlY ON

DEEP-SPACE MiSSlQNS
SUGGEST THAT A SINGLE

ARCHITECTURE MZGHT NOT BE
SVFF1CIE;liT FOR THE VARlElY

OF MISSIONS.

Closed-loop control is possible because stel-
lar-reference units and sun semors, com-
bined with spacecraft geometry measure-

all communicxion within the RA and between
the RA and the DS 1 flight software. (Com-
munication between the RA and DS1 flight
software changed after the March 1997 redi-
recti0n.j The need for a weakly coupled archi-
tectural style arose from a number of goals:

*

merits and trajectory proJections,-provide the
relative positions and orientations between
spacecraft hardware components and the
celestial targets. Rotation rate and accelera-
tion sensors provide the basis for precise, sta-
ble pointing.

'

!
RA on DS1 architectural issues. The RA
on DSI provides onboard, high-level, closed-
loop control of a spacecraft, while also
replacing :hc standard FSW components of
Fault-protection, command sequencing, and
portions of ground-based planning. Some
architectural issues arise from both the pur-
ticulars of the RA and the fundamental nature
of closed-loop control. (The discussion of
these issuas that follow4 is based on archi-
tectural issues that applied prior to March
I997 when the RA was the nominal control

Minimally impact FSW components.
Because the RA is functionally similar to
standard ground-based command se-
quencing and onboard fault protection, the
FSW components need only provide addi-
tional feedback directly to the RA, rather
than into the Earth-bound telemetry
stream. The distinction between the
dynamic command sequencing performed
by the RA and the time-tagged commands
in standard FSW does not significantly
affect FSW command interfaces.
Enable concurrent, largely independent
development teams. Interfaces were spec-
ified based on little shared code other than
the messaging infrastructure. Thus, there is
little serialization of the development
process while waiting for a large amount of
infrastructure to be provided. Instead, the
development teams develop their own
infrastacture, customize it for the team's
own needs, and proceed with the work of
providing their component's functionality.
Suppurt multiple irnplementation lata-
guages. While the non-RA flight software
is implemented in the C programming
language, the RX is implemented in
CommonLisp (Harlequin, inc. supplied
the flight version). The choice of Lisp was
based both on its natural support for RA
technologics arld the fact that the RA pro-
totype had been written in Lisp (and the
compressed developnisnt schedule o f
DSI prevented significant rewrites of
existing code).

The DSI developrncnL soCtware team orig-
inally believed that a weakly coupled archi-
tecture supporting these three goals would
enable the DS 1 RA t o he produced on the com-
pressed schedule and within the cost-capped
limitations that face DSI. However. not all

subsystem for DS 1 . The post-March rrdi- spacecr& autonomy architectures shcluld be
redon, whereby the l iA was rescoped as a I , weclkly coupled. Rather, the linlited rcsourccs
two-week experiment, had architectural 1 on spacecraft suggcst that strong coupling,

"- "

IEEE INTWGENT SYSTEMS ,

while maintaining other architectural featurcs I Moddarity. Autoaorny affects rnodulanty tially thc opposite or encapsulation-in-
such as modularity, is highly desired. because autonomy systems tend to cmploy a i creased visibility tends io expand interfaces

fications between the RA and the standard 1 ally designed. developed. and delivered,' increased visibiiity therefore suggests
FSW on DSI is highly. By recursive, we I which is a highly local view. For example, a architcctures that support model-based,
mean that two subsystems need to know high-level autonomy system such a5 MIR 1 declarative programming. The models both
about the interfaces of the other. For exam- 1 uses inputs from numerous, sensors, models

1 global view whereas modularity demands by making information more accessible
lnretface specification. The interface speci- that software components can be individu- rhrough the Interface.

ple, the RA commands attitude control and
attitude control responds by invoking sensor
update functions specified in the RA inter-
face. Avoiding recursive interfaces is impor-
tant for modularity concerns in light of
closed-loop control and can be achieved with
simple polling or callback patterns. Non-
functional requirements. Nonfunctional
requirements are those system requirements
not direcrfy related to system fun~tiondity.~
These requirements capture the shared con-
text within which development will occur.
They include shared models, cools, andcode. ,

o€ sp&ecraft devices and systems, the envi-
ronment and Its physical interacticns, and
inference engines to infer some aspects of
the spacecraft's state. Modularity, on the
other hand, dictates that spacecraft devices
and systems should contain their own mod-
els, and their detailed operations should be
opaque to higher-level systems.

Consequently, the key to achieving mod-
ularity in light of autonomy is to split the
autonomy system into several parts:

constrain and formalize the visibility (there-
by preserving modularity and encapsulation).
while declared-model instances maintain the
information about state and behavior in an
accessible form.

I
I
I
i r , bility because such systems need to have a

a low-level part that contains models and 1 global view of the lower-level software.

Contlgurability. For reasons of reliability
and resource constraints, spacecraft require
high levels of configurability. Three general
areas of confiprability are considered here:
fault protection, resources, and structure. In
general, autonomy systems affect configura-

Mainly as a consequence of the weakIy cou- I data-provided by device engineers,
pled architecture, RA development did not * a high-level part with configurability, Fault promtion. Autonomy systems affect
incorporate many of the relevant nonfunc- commandability. goals, and global nod- fault-protection configurability because an
tional requirements. For instance. in the area els-provided by system engineers, and appropriate exception handler is likely to be '

of models, the various RA components used a skew level with the inferencing en-
inconsistent state transition diagrams: in the gine-provided by autonomy software
area of tools, different C and Lisp compilers I engineers.
were used; in the area of code, multiple ver-
sions of the same functions were imple-
mented. This lack of adhering to nonfunc-
tional requirements significantly affected
DS 1's development. The impact was felt
mainly during the software-integration
process, which quickly exposed inconsistent
assumptions.

Arthitwtural impacts and
implications

The challenging nature of spacecraft and
the ambitious goals of autonomy systems
significantly a t k t spacecraft software.
Some impacts arise primarily from space-
craft's challenging nature hut are exacerbated
by autonomy systems. Others are due pri-
mari!y :o autonomy itself. In the following,
we describe thc impacts and implications that
autonomy can have cn spacecraft software.
We don't irltend. however, to provide archi-
!wturd solutions to di the impacts described.
Indeed. the severe resource constraints on

Visibility. Autonomy systems affects soft-
ware visibility by requiring that state and
behavior information be both present and
accessible in the software for use by the
autonomy software's deliberative compo-
nents. For example, when a planner is in-
volved, it is often not enough to have a soft-
ware component that runs a state-transition
diagram. Rather, the state-transition diagram
needs to be explicitly represented and thus
accessible to the planner. Visibility is essen-

I

I

dr!q7-5paCK mission.< wggcst tnnt a single
architectup:: might not he sul'ficient for all I '," Managers
types of missions. Highly customizablc and
reusable architectural t'rarneworks are an ---- - . . ~

active topic in <pacecraft software design. Figure 2. Standard flight softwore components.

!

selected based on global information and
because the number and scape of the provided
exception handlers needs to incmse to sup-
port enhanced robustness. For example, a star
tracker might prcduce bad data because &her
the tracker itself ha5 failed or because the
communication bus (to or from the tracker)
has failed. Global information about whether
other devices on the same bus had similar
problems couid resolve the ambiguity and
point to the proper recovery strategy. Con-
figurability implies that a particular excep-
tion handler need not be statically chosen at
design time but can be installed at runtime
based on spacecraft state or mission phase.

The software architecture thus needs to
~ ~ p p ~ r t the dynamic association of excep-
tions with exception handlers. This needs to
be dune respecting modularity, however,
which requires that exceptions and excep-
tion handlers be defined locally (only the
component can h o w the context in which
an exception happens and which particular
handlers apply).

Resourcers. Aumnomy systems affect
resource configurabihty because r, ~suurces
must bc explicitly represerlted to allow cpti-
mal runtime allocation and ph-r ime dclih-
eration. Resource allocation can be of many
types-the most common is I'oI the resource
tu be used exclusively by a specltiecl sub-
system. Other resource types include nego-

I
I
I
i
i
I
1
I
I
!
i

i
I
I
I
I
I
I
i
i

. ". " -"

I
I
I
i
I
1
I
I
I
!

I

i
!
j

I
I

i

I
I
I
!
I
I

I

i

tinted or prioritized resources. As with
Exception handlers. configurahility implies
that the basis for allocation need not be stat-
ically chosen and might be based on both
local and global information.

Consequently, the software architecture
should explicitly model spacecraft resources
and provide resource managers that serve as
the brokers for resource-allocation requests
and as the protectors against resource over-
subscription.

Stmctuml. Autonomy systems affect struc-
tural configurability because global space-
craft models can better isolate failed compo-
nents and because robustness in the face of

fcrent activities, derived from high-level ' components snd to vibualize [he execution
goals, at different times. Examples ofdecp-
space mission activities are launch deturrtblr:
and checkout, thrusting Lruise, and encounter.

The $oftware architecture thus should
avoid, where possible. a priori limitations on
the computational resources allocated to any
particular component. Like other resources,
computational resources should be explicitly
modeled and allocated dynamically.

I Integration. Autonomy systems affect inte-

of plans.' Thcse tools let users casiiy get
gcstalr VICWS af the overall sys:zrn behavior
and interactively investigate particular prob-
lematic aspects.

Interactions between components should
thus tX: made explicir, todelimit the scope of
changes.Accessibility to the runtime execu-
tion o f Components is important for visual-
izing and analyzing system behaviors. Ide-
ally, components should log and timestamp
all their state transitions to provide a com-
plete picture of the system execution. gration because autonomy technology fun-

damentally provides closed-loop control,
which requires lower-level software to pro- ' Testing. The expense of spacecraft failure
vide feedback for the autonomy system. This 1 dicrates that spacecraft software be thor-

faults requires that components be readily I introduces a necessarily tight coupling 1 oughly tested prior to use, which is typically
replaced. Structural configurability allows
for different components to be employed in
response to different requirements, faults, or
resource limitations. An example is to replace
a faulty physical gyroscope with an inferred-
state, virtual gyroscope.

A wider variety of spacecraft software
components thus need to allow their struc-
tural subcomponents to change dynamically.
Large numbers of plug-compatible compo-
nents should be provided to facilitate robust
operation. This also has implications for vis-
ibi!ity, because the different components are
likely to have different models, in terms of
accuracy, resolution. functionality, etc.

Asynchronousity. Spacecraft, by their na-
ture and in spite of our best engineering
efforts. are event-based. asynchronous sys-

I between the higher- and lower-level compo-
nents, making it difficult to develop and test
components independently. ! Consequently, the software architecture
should forbid recursive interface definitions,

terns. Faults occur, and those faults are always and avoid modeling of !ow-level components
asynchronous. Sensor states change based on within higher-level components. Doing this,
actuation; those changes are asynchronous and having well-specified interfaces, in-
owing to various sources of indeterminacy. creases the probability of producing fulIy
The environment is unpredictably rife with functional, modular, tested components for
interesting scientific events like volcanic I the integration process.
explosions that are always asynchronous.

I Therefore, accurate software modeling of
this inherent asynchronousiry requires that
the software use event-based multiprocess-
ing with a preemptive scheduler. Event-based
processing ensures that external events map
accurately into software events. Multipro-
cessing is required because events arise inde-
pendently and simultaneously from different
sources. Preemptive scheduling acknowl-
edges that some evcnts are more important
than others and that there cannot be one
processor for each source of events.

Dynamism. Spacecraft exist in a dynamic
environment and are c x p e c t a t to perform dif-

Tools. A good set of tools can make any soft-
ware system easier to develop, rest, and
maintain. This is particularly true of auton-
omy technologies, which systems typically
have complex interactions among compo-
nents. For example, configuration manage-
ment tools can be used to increase the likeli-
hood :hat changes in one part of the system
will be propagated to other affected parts.
Visualization tools can help in understand-
ing system behavior. T h ~ s can be difficult to
do manually, due to large amounts of data
and the asynchronous nature of the process-

I
I

I ,

several times more time-consuming and
expensive as creating the software initially.
The added complexity and functionality of
autonomy technologies compounds this prob
lem. There are aspects of the software archi-
tecture. however, that can facilitate this task.

Unit testing. As discussed earlier, autonomy
systems tend to be highly coupled. Thus, to
thoroughly unit-test an autonomy component
(such as the EXEC), system designers need
to know not only how it functions internally,
but also how it responds to the behavior of
other system components. Thus, they must
often be able to embed the component within
rhe system, which is generally not possible
because the various system components are
being developed concurrently.

The architecture thus should allow system
designers LO stub out individual components
and replace them with functionally equiva-
lent (but simpler) modules. A message-based
publish-subscribe architecture. such as is
used on DS 1, makes it relatively easy to
replace one component with another.

Sirnulurion. Because spacecraft hardware is
a scarce resource, and is typically not even
available duricg software development, ade-
quate hardwarc simulations are essential to
testing. Different components, however, have
different simulator requirements. Some, such
as .4CS, need to simulate dynamics; for other
corr~punents, kinematic sirnulztion suffices.
In s p m of this, all simulations should be
based on consistent hardware models.

Therefore, a single. multiresolution sirn-
ulatur should be used, allowing scaling of the
simulation's fidelity. The slrnuiator should

ing. For instance. for DSI, we d&oped 1 ;so support lkult injection and the Ahllity to
tools to visualize the message traffic between 1 Jynarnlcally change thc .;tale o f simulated

1

I
I
I
I
I

I
!
I
I
I
I
i
!
!

i
1

i
!

I
1
!
1

1
i

!
I

i

r
-. -"-

level aspects of the autonomy system, be- ' demonstration on DSl painfully suggests
cnusedeep-space missions are typically char- howevcr, autonomy technology hns a signif
acterized by long periods of inactivity in icant effect on spacecraft software tha
which little of interest to higher-lcvel com- I should not be ignored. While many of tht

I
ponents occurs..

Formal Verification. A spacecraft can
encounter a huge number of possible scenar-
ios-much larger than can be tested by trial
and error. Formal verification methods can be
used to significantly reduce the develop-test-
debug cycle for complex spacecraft systems.
For instance, in DSI aspects of the EXEC
inference engine were model using temporal
logic and verified using model checking.*
Similarly, a designer can formally represent
the domain models created by the spacecraft
developers (for example, the models used by
PS or MIR) and verify properties of the mod-
els (such as that the MIR models will not
exhibit false positives or false negatives).

To apply such formal methods, software
components must have well-specified
semantics and explicit requirements and
specifications (so they can be checked auto-
matically). The desire for formal verification
also places constraints on the models used
by the autonomy technologies - languages
that are too expressive may be difficult, if not
impossible, to verify automatically.

technology for present and future generations
o f spacecraft cannot be overestimated. High-
level, closed-loop control based on sophisci-
cated model-based. fault-tolerant, config-
urable, and dynamic software architectures
will Ict NASA pursue space missions that for
Irchnological or financial reasons it could
not otherwise attempt. Spacecraft systems
that exhibit P significant amount of auton-
omy have the potential of bcing both more
rcliable and more powerful than those based
on standard flight software.

effects exist to a lesser degree in curred soft
ware architectures. they are exacerbated b]
autonomy systems. Awareness of thest
impacts and a willlngness to reexamine tht
shortcomings of both spacecraft softwart
architectures and autonomy implementations
will be a weicomed, needed result of the DS I
experience.

Acknowledgment
The =search we have described was carried OUI

by the Jet Propulsion Laboratoq. California Insti-
tute of Technology. Ames Research Center, and
Camegie Mellon University under contracts with
the National Aeronautics md Space Administra-
tion. 'Ihanks go to the members of the DSI Remotc
Agent team, for developing and integrating the
autonomy technologies. and to the anonymous
reviewers who provided insightful comments on
an earlier draft of this article.

Reformer
1 . M. Shaw and D. Garlan, Sofnvnre Architec-

w e : Perspectives on an Emerging Discipline,
Prentice HA, New York, 1996.

2. K. Lieberhea and 1 . Holland. "Assuring Good
Style for Object-Oriented Programs." IEEE
Sofhvare. Vol. 6. No. 5, Sepr. 1989, pp. 38-49.

3. 8. Pel1 et al.. "An Autonomous Spacecraft
Agent Prototype," Pmc. 4ufonomousAgenfs
'97, ACM Press. New York. pp. 7-53-261.

4. D.E. Bernard ct al.. "Desigu of t h e Remote
Agent Experiment forSpacccraft Autonomy,"
Pmc. IEEEAemspuce Con$. IEEE Press. Pis-
cataway. N.J.. 1998. pp. 259-281.

5. Developing Obj,jrcr-Oricnucl Sojfwure: An
Experience-Based rlppntuch. Rentice Hall.
1997.

6. C;. Booch. Object-Oriented Analysis and

7. R . Simmons and G . Whelan, "Visualization I
Tools for Validating Software of Autorrolnous
Spacecraft," Proc. In'tl Svmp. Ai , Robotics,
and Auronotny 111 Space (i-Suirusi. JS.ME
Press. Tokyo. Japan, 1997, pp. 3944.

fication and Validation of AI Systems that I
I

8. M. Lowry, I(. Havelund. and J. Penix, "Veri-

: I Conuol Deep-Space Spacecraft? Proc. 10th
Int'l Svmu. Merhodoloniesfir Inrellieent Svs- ' i rem, Sphger-Verlai N& York, f997, pp.
35-47.

Edward B. Gamble, Jr., is a member of the
Advanced Multimission Software Technology
group at JPL. He received his bachelor's and mas-
ter's in electrical engineering from UCLA. His
doctorate was awarded in electrical engineering
witha specialty in artificial intelligence from MIT.
His interests have ranged from laser scattering in
fusion plasmas and in critical phenomenon, to
computational vision and integration of sensory
information, as well as to programming languages
and real-time systems. He is currently involved in
spacecraft software architectures for reuse and
autonomy. For the Deep Space One Remote Agent
experiment, he is a deputy project element man-
ager and the team lead for both the flight software
interface to the Remote Agent and for the Smart
Executive team. He is amembcr of the IEEE. Con-
tact him at JPL. 4800 Oak Grove Dr., Pasadena,
CA 91 109-8099: ed.gamble@jpl.nasa.gov.

Reid Simmons is a senior research computer sci-
entist at Carnegie .Menon University's School of
Computer Science. He earned his BA from SUNY
at Buffalo, and his MS and PhD from MIT in arti-
ficial intelligence. His research has focused on
developing self-reliant robots that can au-
tonomously operate over exrended periods of t ime
in unknown, unstructured environments. The
research involves issues of robot navigation, plan-
ning and reasoning under uncertainty. and control
architectures that combine deliberative and mat-
tivc control, selective perception, and robust error
detection and recovery. He is a member of the
IEEEE, AAAI, Phi Beta Kappa, Sigma Xi. the New
Millennium Autonomy IPDT, and was program
chair of the 1998 International Conference OIL AI
i n Planning Systems. Contact him at the Schuol of
Computer Sctence. Camegie Mrllon Cniv.. 5000
Forbcs Avenue. Pittsburgh, PA 152 13; reidsQcs.
cmu.edu; I1ttp.Nwww.cs.cmu edu/-reidr.

I

mailto:ed.gamble@jpl.nasa.gov

